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ABSTRACT 

This paper studies some of the theoretical questions of large openings 
or gaps in a single stream of traffic. A gap in the traffic stream is 
defined as a headway between vehicles greater than or equal to some 
minimum size -- say x. Several authors have studied the probability 
distribution of the wait which a randomly located observer must endure 
before he finds a gap. This paper, while briefly reviewing the solutions 
of this well known problem, is primarily concerned with expressions for: 
(i) the distribution of gap sizes; (ii) the distribution of spacings between 
vehicles and gaps; (iii) the mean and variance of inter-vehicle and inter - 
gap spacings; (iv) the stationary flow rates of gaps; and (v) the distribu- 
tion of blocked and unblocked periods. It is assumed that the origin of 
measurements may be located (i) with the passing of a vehicle, (ii) at the 
beginning of a gap. or (iii) at random. It is also assumed that the distri- 
bution of inter-vehicle spacings are independently, but identically, dis- 

tributed random variables. 



• k 
0.    Introduction 

liiere are several well-known variations of a merging problem which arise when 

traffic in a minor stream joins or crosses a major flow stream, the criterion for 

merging being that a minimum size gap appear between vehicles in the major stream. 

As the problem is usually formulated one or all vehicles in the minor stream merge 

with the major stream whenever the headway to the next vehicle is greater than or 

equal to the minimum size gap. * 

In automobile traffic this problem arises in low-speed merges when cars come to 

an intersection, stop and wait for the desired gaps in a cross stream of traffic.   While 

this situation may be one of the more obvious places where a study of gaps in traffic 

streams is needed there are many other examples:   In high-speed automobile merges 

the question is often one of finding empty road-space into which cars can fit.   At air- 

ports departing aircraft wait for the use of a runway which also services   the higher 

priority landing aircraft; the former can only occupy the runway when gaps of certain 

minimum size appear between successive landing aircraft.    Flight rules often specify 

for safety and/or reasons of dotectability that, in crossing air-lanes, aircraft at the 

same altitude must at all times be separated by some minimum headway from one 

another. 

While I have introduced the gaps in the major stream in the context of the wait of 

a vehicle in the minor stream which looks for the first gap or opening in the major 

stream, it is at this point that 1 would like to make clear the distinction between the 

major and minor stream and clearly identify the fact that the gap production process 

is one which can go on in the major stream in the absence of a minor stream of crossing 

or merging traffic. 

*In earlier papers the word "gap" has often referred to any empty interval; in this 
paper "gap" specifically refers to intervals between vehicles greater than or equal 
to x, the minimum size gap. 



The word "minor" certainly seems appropriate when one considers mathematical 

merging models which allow at most one merging vehicle per gap into the major 

stream(1^   In this case it is easy to show that the stationary flow rate of gaps is always 

less than the stationary flow rate of vehicles in the major stream; hence the phrase 

jpinor stream refers to one whose steady state flow rate is less than that of the major 

stream.   However, in actual merging situations it is often the case that the "minor- 

stream contributes the larger fraction of downstream flow.   Generally speaking, ae 

vehicle flow rates in the major stream decrease, gap sizes increase; many vehicles in 

the minor stream may be absorbed by a single large gap in the major stream.   If. on 

the average, the total rate of absorption is greater than the  -major" stream flow rate 

it would seem natural to reverse the names of minor and major stream.   It is this 

apparent contradiction which has led me to consider the role of these two streams and 

to think perferably in terms of a primary and a secondary flow process. 

This paper will be primarily concerned with the statistical characteristics of 

large gaps or openings in a single traffic stream.   The flow of vehicles in this major 

stream, though unpredictable, does not depend on the presence or condition of 

vehicles in an intersecting or merging stream.   Large openings appear in the major 

stream only because the statistics cf inter-vehicle spacings in that stream tell us that 

one can expect to find vehicles separated by gaps a certain fraction of the time.   The 

casual reader of earlier papers might come to the conclusion that the gap-producing 

process is a function of the wait endured by a vehicle in the minor stream; rather, it 

is the other way around, the gap process in the major stream and a specific merging, 

stopping or crossing mechanism helps to generate a secondary or minor stream 

process. 

The approach used in this paper differs from earlier ones in that the statistical 

characteristics of the gap-producing process in the major stream are examined and 

then used to analyze a secondary process   (of which there may be many).   It is 



important to point out, nonethaless, that the observation of ihe queue length of vehicles 

or the wait of a single vehicle in a minor stream may be of immense predictive value 

in determining the appearance of gaps in the major stream. 

Assume that inter-vehicle spacings are independently and identically distributed. 

A certain fraction of the vehicles will be separated by intervals greater than or equal 

to x while the remainder will be separated by intervals less than x.   In Section (1) 

expressions are obtained for the probability distribution of counts of gaps when the 

distribution of headways between vehicles or gaps is not included in the discussion. 

In Section (2) the probability law which describes the length of the interval from 

the beginning of a gap to the beginning of a successive gap is found as a function of 

the inter-vehicle distribution and the minimum gap size.   The mean and variance of 

this inter-gap distribution are then related to the mean and variance of the distribu- 

tion of inter-vehicle headways. 

In Section (3) expressions are obtained for the distribution of the size of blocked* 

and unblocked periods and the wait for the first unblocked period. 

In Section (4) the discrete gap counting distributions and the average and variance 

of the gap and block flow rate are derived. 

In Section (5) analytic and numerical results are given for the case where inter- 

vehicle headways are exponentially distributed, i.e., vehicle counts are Poisson. 

In Section (6) moments of the inter-evsnt distributions are obtained in terms of the 

vehicle flow rate when vehicles appear in bunches but each vehicle is separated by a 

minimum headway. 

Section (7) compares some of the results obtained in this paper with results of 

earlier authors. 

A blocked period is one in which the headway for any point to the next vehicle to appear 
is less than or equal to x,  the minimum gap.   See Figure (1) and paragraph preceding 
Equation (3.1), in this paper and Figure (1) in Reference (11). 
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While the study of the gap-producing mechanism was generally incidental to the 

study of the probability distribution of wait for an unblocked period, several authors 

have studied the frequency of appearance and the distribution of large gaps in traffic 

streams.   As early as 1936 Adams^  ' obtained a formula for the average wait for an 
(A) 

unblocked interval in a Polsson stream.   In 1950 Garwood1   ' calculated the probability 

distribution of delay of vehicles at Intersections with a special type of actuated signal 

In 1951 Rafr ^ made use of these results to obtain the probability distribution of wait 

for an unblocked period and the probability distribution of block sizes.   In their 

papers Garwood and Raff were only interested in Poisson traffic streams.   The proba- 

bility distribution of wait for an unblocked period was derived in three distinct ways 

by Tanner'    'when the traffic count in the major stream was Poisson. 

Mayne^ ^ obtained an integral equation for the conditional probability distribution of 

wait for an unblocked period given the spacing to the next vehicle in the traffic stream. 

He then derived the probability distribution of spacing between a randomly chosen time 

origin and the passing of the first vehicle and obtained the marginal distribution of 

wait in terms of its Laplace transform,    Maynex   ' assumed that inter-vehicle spacings 

were arbitrary but independently distributed random variables.   More recently, Weiss 

and Maradudhr ^ have analyzed the problem with methods of renewal theory; they 

formulate the conditional probability distribution of spacings between vehicles in terms 

of the random variable which describes the wait of a vehicle in the minor stream. ' 

Special attention is given to a generalization of the waiting problem where vehicles 

in the minor stream are assigned a probability distribution of gap acceptances. 

Jewell    ' has derived the wait for an unblocked period for arbitrary arrival character- 

istics of the vehicle in the minor stream.   He has also obtained results for the dis- 

tribution of counts of vehicles crossing through unblocked periods when an infinite 

queue of vehicles appears in the minor stream.   J.D.C. Little1    has obtained approx- 

imate expressions for the delay of n vehicle in several distinct merging and crossing 

maneuvers. 



Notation will be defined as it is used but for reference purposes it may be con- 

venient to have a paragraph outlining the general structure of the probability distribu- 

tions and the moments which measure inter-vehicle and iater-gap headways: 

a(t):   the probability density function that the headway between two 

vehicles is t, 

b(t):   the probability density function that the headway between a vehicle 

and the first vehicle v hich marks the beginning of a gap is t. 

c(t):   the probability density function that the headway from beginning of 

a gap to beginning of a gap is t. 

The distribution of sizes of gaps and blocked periods are: 

f(t):    the probability density function of block sizes. 

g(t):   the probability density function of gap sizes. 

h(t):   the probability density function of sizes of unblocked periods. 

If one starts to measure headways from a randomly located time origin, 

u(t):   the probability density function that the spacing to the first vehicle is t. 

v(t):   the probability density function that the spacing to the beginning of the 

first gap is t. 

w(t):   the probability density function that the spacing to the first unblocked 

period is t. 

Cumulative (tail) distributions are indicated by a capital letter and the subscript n 

refers to a headway between n events, say n vehicles or n gaps.   For example An(t) is 

the probability that the spacing from a vehicle to the nth_ vehicle is greater than or 

equal to t.   It is understood that the absence of a numerical subscript refers to the 

n = 1 case.   The Laplace transform of a function is indicated by a tilde (~) over the 

function and the dummy variable s in place of the transformed variate. 

The average value of the headway between vehicles is indicated by V and the vari- 

ance by   a2.   Means and variances of the other distributions are distinguished by sub- 

scripts such as Vb, o*; Vw. a^ ... etc.   The stationary flow rate of vehicles is ji and 

of gaps n ,      5 (t) is the I>irac delta function. 



The Count of Vehicles and Gaps 

The first clues that gap statistics may bo simple to derive appear when one 

neglects the length of the headway between successive vehicles.   If one thinks of the 

passing of a vehicle as the occurrence of a trial which is either a success (i.e. follow- 

ed by a gap) or a failure (i.e. no gap) there will be runs of gap 6 followed by runs of 

vehicles which do not begin gaps.   One can assume that the probability of a gap 

equals the probability that the spacing between two vehicles is greater than or equal 

to x, i.e. A(x), Since inter-vehicle spacings are identically but independently distri- 

buted the probability that for the first time the nth vehicle will result in a gap is the 

geometric distribution 

Pr   =  A(x)  (l - A(x)j 
\n-l 

nal      (1.1) 

which, incidentally, counts the gap as a vohicle.    The probability that a gap (the 1st, 

2nd, ... nth) will occur with the nth vehicle is independent of the vehicle number and is 

just equal to the gap probability A(x). 

From this simple expression there is no difficulty in obtaining the binomial proba- 

bility distribution p       of    counting m gaps with the appearance of n a m vehicles 
mn 

Pm„  - (m)   <A<*»m   0 -'*«)'" 
m 

nSmSl      (1.2) 

and the binomial distribution qmn  that there will be   n  vehicles up to and including 

the passing of the mth gap 

-m 
qmn 

nam       (1.3) 



Since a gap is counted by the vehicle which starts the gap, the mth gap must 

signal at least the passing of the mth vehicle.   One counts m gaps and n-m vehicles but 

since a gap must end  the sequence of trials the arrangement of the remaining m-1 gaps 

is among n-1 vehicles.   If vehicles are distributed in a random Poisson fashion then 

the distribution of inter-vehicle spacings is exponential.   If the average inter-vehicle 

separation is n'1   the probability that the spacing between vehicles is greater than or 

equal to a minimum gap x is  o"1151.   Substituting e"^ for A(x) in Equations (1.1)(1.2) 

one gets the Furry distribution, 

0-e-)" p e-^   i i   ^ .rK^   Y1' nil     .....   .   (U4) 

for the probability that tha first gap is begun by  car    n     and 

- (:) *-™ O-1")"' nSmSl (1.5) 

for the discrete counting law of gaps. 

The average number of vehicles which must go by befora^ gap is 

oo 

A"1 (x)  t1'6) 
n-1 

i.e. just the reciprocal of the probability that the spacing between vehicles is greater 
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than or equal to x.   It is tempting (and correct) to assume that the average headway, 

v   from beginning of gap to beginning of gap is the product • 

headway v  and the average number of cars between gaps*. 

vrt from beginning of gap to beginning of gap is the product of the average inter-vehicle 

Vc  =   VA"1^) (1.7) 

By excluding the average length, v  ,   of the gap itself one can obtain the average 

headway,  v, ,   from any vehicle to the beginning of a gap+. 

Vb =  VA"1^)   -Vg  (1.8) 

When inter-vehicle headways are exponentially distributed with mean   u    , the average 

inter-gap headway is 

Vc    =  n^e1«  (1.9) 

The reciprocal of the stationary gap flow rate \i.e   ^  and the average headway to the 

beginning of a gap is 

*  See Equation (2.20) 

+   See Equation (2.17) 
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Vv.  -   ITV*    -   Ji'1    -  x  (1.10) 
D ^ 

a formula originally obtainod by Adauis(1^ in 1936.   While the special  Poisson 

traffic streams leads to notable algebraic simplifications, it is conceptually no 

more difficult to consider arbitrary distributions for inter-vehicle headways.    In 

order to calculate the headway between gaps or the count of gaps in a given interval 

one must include information about the headways between those vehicles which do not 

begin gaps as well as the lengths of gaps themselves. 
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2.    The DiBtribution of Hoadways Between Vehicles and Gaps 

The headway between every nth vehicle will consist of the sum of n inter-vehicle 

headways; m of these may be gaps and n-m may not be large enough to qualify as gaps. 

The joint probability a(t; x)dt that the headway between two vehicles lies between t 

and t + dt and that t is less than x has a density function, 

a(t;x)   -  aCt) 0$ t<x (2.1) 

=,0 xs t 

where a(t) is the probability density ofa headway t between adjacent vehicles.   We n9te in 

passing that this is not the conditional probability distribution of headways given that 

headways are less than x.   The probability that the headway between each of two succes- 

sive vehicles is less than x  and the sum of both headways lies between t and t + dt ip 

a2(tpc)dt where. 

a2(tpc)  -   /    a(r;x) a(t-r; x)dr 0 S t  <2x        (2-2) 

In general, we find that the probability density distribution of headway between n 

vehicles where no gap is observed between any one vehicle is 

t 
in(t; x)   = J     an.1(r; x) a(t-r; x)dr 0 S t < nx (2.3) 

and zero outside the interval |o, nx).   an(t; x) is the probability density of the sum of 
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n inter-vehicle headways each less than x.    The probability law which describes the 

headway between every nth  vehicle when one does not distinguish between gaps and inter- 

vehicle epaclngs which are smaller than gaps is the n-fold convolution of the probability 

density of inter-vehicle headways. 

in(t)  -   f  an^1(r) a(t-r)dr  (2-4) 

An observer of a traffic stream may find that the headway between the nth and (n+l)st 

vehicle is the first one greater than or equal to x.   The probability that the headway 

between a randomly selected vehicle and this nüi. vehicle   -i.e.  the first to start a 

gap — lies between t and t+dt is 

an(t; x)  A(x)dt nil     (2.5) 

Since the first gap may appear with the passing of the first, second nth vehicle 

the probability that the headway between a vehicle and the beginning of a gap greater 

than x lies between   t and t+dt  has a density function 

b(t)   =   A(x) 6(t) t = 0       (2.6a) 

-)       » <t-.x>A(x> t>0        (2.6b) 
n=l 

= ;       an(t; x) A(x) 
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b(t) 18 also the density distribution of "non-gap" sizes in Figure (1).   To find the proba- 

bility that the inter-gap headway, i.e. from beginning oi gap to beginning of gap, is 

greater than or equal to t, we note that this headway is the sum of two random variables, 

one representing the total time from end of a gap to beginning of the succeeding gap, the 

other being the length of the gap itself.   The conditional probability distribution of gap 

sizes is, __ 
JM t-«'x 

•«•    - 

^    a^A^x) *S  t (2.7) 

and C(t), the probability that the inter-gap headway is greater than or equal to t. can 

be represented as the convolution of this distribution with b(t) in Equation (2.6), 

oo    r 
(2.8a) 

C(t) = J   / b(r " y) g(y) dy dr 

=     A /    b{r - y) a(y) dy dr  (2-8b> 
t    Jx 

Since we are for the most part considering convolution type integrals it is helpful to dis- 

cuss Equations (2.1) through (2.8) in terms of their Laplace transforms.   The Laplace 

transform of the inter-vehicle density distribution a(t) is 

a(s) -^aWe-8* dt  •  (2-9> 
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and of the joint probability distribution a(t; x) 

oo 

1f(8: x) ^   T Mt; x) e"Bt dt 

«   T a(t)e-Btdt (2-10) 

Hence, the transform of the density distribution of headways between every n vehicles 

(Equation (2.4)) is 

an(s) ^a(s)J (2.11) 

and between n vehicles when no gap appears between any two vehicles is 

an(s; x)  = (^ a(8; x)J 
(2.12) 

Substituion of Equation (2.12) into (2.6) and summation of the geometric series leads to 

the transform of the 'Vehicle-to-gap" distribution, 

^b(s)  =    A(x)^l -a(8:xy  t2-13> 

Similarly, substitution of Equation (2.13) and (2.9) into (2.11) gives 
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CW B      1 - a(8; x) 
(2.14) 

the transform   of the probability distribution of inter-gap headways.   While any one of 

these transforms may be difficult to invert one can obtain simple expressions for the 

moments of these distributions. 

The mean and variance of the headway between vehicles are obtained from the 

inter-vehicle distribution 

v      ^  /    * a(t)dt 

2 a      = f-W a(t)dt 

(2.15a) 

(2.15b) 

The mean and variance of the gap sizes are 

^r t g(t)dt (2.16a) 

a2g    m f    (t-Vg)2   g(t)dt 
o 

(2.16b) 

The average vehicle-to-gap headway can be obtained by evaluating the negative derivative 

of b(8) at   8=0, 



^   =    V A     (X)   - V 
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1 -  (2.17) 
g 

If we recall Equation (1.7) we note that the vehicle to gap headway is the difference 

between the average inter-gap headway and the average gap size in Equation (2.16a). 

v.   can also be written as 
D 

X 

vb   =    r    t a(t) A"1(x) dt  (2-18) 

which equals the average number,   1 ~(^|x),      times the average size of those inter- 

vehicle headways which do not qualify as gaps. * 

The variance of the vehicle to gap distribution b(t)   is obtained from the first 

and second derivatives of Equation v.2.13) 

ol    =   vl    +  T   t2   a(t) A'V)   dt   ........ (2.19) 2     r* 
-vb    ^ 

2 o ^ + v2 2        2 
b     + A(x) l  g        g; 

The average inter-gap headway obtained by evaluating C(G)   at   s -   0, 

v,      =   VA'V)  (2-20) 

*From Equation (1.6)  wo note that     ^^   is just the average number of vehicles 

between but not including the ones which begin gaps. 
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is the result already obtained in Equation (1.7).   The variance of this headway is obtained 

in terms of the value of the derivative of C(8)  at  8 = 0, 

a*   =  A-^f^-V^i-ACx^A"1^)   ^2VVb} (2.21) 

B     can c 
also be found with the help of the variance theorem for sums of independently 

distributed random variables. 

2 
a     + 

b 

=    A*1(x)-j cr2   •   v 2(^1 + A(x)) A^Cx) w. } (2.22) 

Substituting Equation (2.17) into (2.22) leads to Equation (2.21).   In other words Equations 

(2.21) and (2.22) are equivalent expressions for the variance of the inter-gap headways. 

While the former is a function of the mean vehicle to gap headway the latter is a function 

of the mean gap size. 

So far we have discussod tima origins which start with the passing of a randomly 

chosen vehicle or those vehicles which begin a gap.   We will make use of still another 

time origin in our study of the flow of gaps in the traffic stream.   If we start at random 

to measure a headway to the beginning of a gap we will refer to its probability density 
(12) 

function  v(t).   It is well known from renewal theory that 
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v(t)  =     V-1    C(t)  (2.23) 

which has a transform equal to v^1    times the transform of Equation (2.14).   One can 

also derive  Equation (2.23) by a second line of argument:   If one starts to observe 

traffic at random the probability that the headway to the first vehicle lies between   t 

and t + dt is u(t)  = v'1 A(t);  the probability density distribution of headway from this 

vehicle to the beginning of the first gap is b(t)  in Equation (2.6).   The convolution of 

these two probability distributions is 

v(t) -      J u(r) b (t-r) dr (2.24) 

with transform 

o*y.v   .     AM      I - Sgi   (2.25) vt8)  ~     vs       l -«(a-. X) 

which is also the transform of Equation (2. 23).   As one might expect the statement 

"starting at random" can rofer to either the passing of a vehicle or the passing of a 

gap. 

The average value of the distribution v(t) is the avorage wait for the beginning of 

the first gap if an observer arrives at random.   It can be expressed as the sum of the 

average headway to the first vehicle. 
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2        2 CT    + V =    /    tu(t)dt  =    —^ (2.26) 

and the average headway   vb from the first vehicle to the first gap.   Substitution of 

v    for   v   and   or    for  »     in Equation (2.26) leads to the expression 

CT2  +V
2 

c c 
2 VÄ 

V       +   V 
u b 

-     °1 +v   fSjLAfel) 
2V   +       \ 2A(x)    / 

(2.27) 

in terms of the moments of tho inter-vehicle distribution and the average gap size   Vg. 
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3.    Block Sizes and the Wait for Unblocked Periods 

Until this point we have only been concerned with the statistical properties of the 

intervals between gaps and the intervals from selected points (vehicles, random origins, 

end of gaps, etc.) to the beginning of a gap.   In earlier papers some of these results 

were derived in terms of the wait of a minor stream vehicle which looks for the first 

unblocked period.   We will denote the probability density function of wait for an unblock- 

ed period by w(t)  and point out that this is not the same function as  v(t) in Equation 

(2.23).    This distinction is made clear by considering the differences between blocked 

periods, unblocked periods and gaps in Figure (1).   A blocked interval is one which 

begins a time   x  prior to the end of a gap and terminates with the beginning of the next 

gap greater than x.   In the third line of Figure (1) we notice that a vehicle which arrives 

during a blocked (shaded) period must also wait for the first gap but one which arrives 

in an unblocked period does not have to wait at all.   The major difference between the 

distribution of wait for an unblocked period and the wait for the beginning of the next 

gap is the term expressing zero wait; it is, of course, non-zero in the former case. 

With low flow rates in the major stream the probability that a random arrival in the 

minor stream (i.e. the measurement origin) is located in the middle of an unblocked 

period is largo.   When flow rates are large the probability of zero wait should be small 

andw(t) should resomble v(t). 

In the introduction I made reference to the fact that the density distribution, w(t) 

had been calculated by several authors.   By considering the sequence of events which 

gives rise to no wait or t» a positive wait it is possible to obtain w(t)   in terms of the 

probability density,   b(t), of headways from a vehicle to the beginning of a gap. 

The probability of a zero wait for an unblocked period is the probability that the randomly 

chosen time origin is separated by more than x from the first vehicle, i.e.   U(x).   If 
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we define diBtributions u(t; x) and un(t; x) (similar to a(t; x) and an(t; x) in Equations 

(2.1)(2.3))which are the probability density distributions of headways from a random 

origin to the first or nth vehicle, we can find the probability of positivo wait for an un- 

blocked period.   This wait is the sum of the wait to the first vehicle (which must arrive 

before x) and the wait from the first vehicle to the beginning of the first gap. 

w(t)  =    U(x) 5(t) 

I u(ri ; x) b(t-r) dr 

with transform* equal to 

~, v TT/ v A(x) 1J(S; X) 
w<8)  ""    U<x>  +      l-Ms'x) 

I   =   0 

t >0 

(3.1) 

(3.2) 

>(?) This result was obtained in a slightly different form by Maynew.     v^, the average wait, 

is smaller than  V     since (i) the probability of zero wait for an unblocked period is 

positive,   (ii) a positive wait implies a wait for the beginning of a gap. 

Vw  ^ C1 " U(x)/Vb  + f  t u(t) dt (3.3) 

*Jewell^ obtained Equation (3.2) for more general "starting-up" distributions, i.e., 
if the distribution of headways to the first vehicle is d(t) he shows that, 

w(s)   =   D(x)   +   A(x)d(s;x) (1 -^(s; x))'1 

Note that   when d(t) = a(t) one gets w(s)   = "b^s). 
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vw  =vv  -U(x)vb-   £-[al   +v|   -A 

llie distribution of block sizes is   itself   an interesting one since the calculations 

enables us to generalize on some results obtained by Raff 

Let f(t) be the density distribution of block sizes and h(t) be the density distribution 

of lengths of unblocked periods.   Blocks can be constructed from "non-gaps" by extend- 

ing the latter by x.   Hence, the distribution f(t) of block sizes is the translated distribu- 

tion of b(t). 

f(t)   =   b(t-x) tax  (3-4) 

and is zero for values of headway less than the minimum gap.   The distribution h(t) of 

sizes of unblocked intervals is the solution of that convolution (with f(t)) which leads to 

the distribution of spacings from beginning of an unblocked period to the beginning of a 

unblocked period.   Since an unblocked period is always followed by a blocked period and 

since ihe beginning of an unblocked period is also the beginning of a gap the oonvolution 

menUoned above must also equal the probability distribution of inter-gap headways, 

o(c) =o 0 ^ t < x 

tg x  (3.5) »    T  f(r)h(t-r) dr 
^o 

By direct geometrical argument from Figure (1) one can see that a gap of length  t + x 

corresponds to an unblocked interval of length  t.   Hence, the solution of h(t)   in Equa- 

tion (3. 5) is the translated distribution of gap sizes in Equation (2.7) 
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h(t)  =    g(t + x) tlO  (3.6) 

-    A'V)   |a(t + x)   -a(t+x;x)J 

The product of the transform of the block size distribution 

r, v -sx w»\  (3.7a) f(8)  =    o        b(s)   

and the distribution of lengths of unblecked periods 

IC.)   =    A-\x) e8X    [ t(.)   -    a(s;x)]  ^b) hi 

must equal the transform of the ioter-gap distribution.    From Equations (2.13)(2.14) 

and (3. 7) 

WM.) - -'fu^r ■ =<s>    (3•8, 

The average and variance of the blocküd and unblocked periods are 

vf  = v b   +    x   =     VA'V)   -vg+x  (3.9a) 

2   _    2  (3.9b) 
Ol   - % ' ■ '  ■ 
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v.   =   vo.-x  (3.9c) 
a g 

a? =    a2  {3.9d) 
h g 

There is no difficulty in finding expreßßions for the wait,   w(t) , for an unblocked period 

in terms of the distribution of block sizes.   The probability of zero wait is, as before, 

U(x), the probability that the minor stream vehicle arrives during an unblocked period. 

The probability that the wait is  t > 0  is the product of (i) the probability that the wait 

is not zero and (ii) the probability that the interval from the randomly located time 

origin to the end of a block is   t, i.e. 

w(t)  "   (l - U(xy v^FU) t >0  (3.10) 

The transform for w(t) includes the probability of zero wait, 

w(8)   =   U(x)  + fl -  V(xyv~l   F (s)  (3,11) 

Equation (3.10) is an interesting one aince it generalizes on a result obtained by 

Raff^11^  for Poisson traffic. w(t)  is always a linear function of  F(t) but w(t) is only a 

linear function of  W(t - x)  when the traffic is Poisson,    (Soe remarks following Equa- 

tion (5.17)). 

In order to show that Equations (3.2) and (3.11) are equivalent expressions, it is 

helpful to state and prove two identities, the second of these related to the probability 
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(14) 
of zero wait for an unblocked period and a number which Weiss and Maradudinv       have 

chosen to call the transparency of a stream of traffic - I.e., the fraction of time the 

major stream is not blocked. 

The first one, 

*(•; x)  =    ^ {l -  a(s; x)  -  A(x) e"851}  (3.12) 

is easily obtained by partial integration of the transform of 

u(t: x) -     v'1 A(t; x)  (3-13) 

The relation between the probability of zero wait for an unblocked period and the average 

length of those periods. 

v^v  -1    =  U(x)  (3-14) 

appears repeatedly in a discusslwn of gaps, blocked or unblocked periods*. 

Veiss and Maradudin (14> have shown that with their gap acceptance criteria the trans- 
parency may n«t equal  U(x), the probability of zero wait. 
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Equation (3.14 can be proved in several ways.   A direct and simple proof makes 

use of Equations (2,20), (3.9) and the partial integration of  U(x), 

oo 

U(x) =    v"1      /    A(t)dt (3.15) 
^x 

=   A(x) V1 vg -   x   v;1   =vh v;1 

By substituting    7(1   -  e""Bl«)J   for   F(6),   vh  v"1   for   U(x) (Equation (3.14)) and 

Equation (3.12) into (3.11) one obtains the original expression for the transform of wait 

(Equation (3.2)) 

w <'>-^)*^h^  (3-l6> 

in terms of the inter-vehicla statistics.   With Equation (3.14) one can also obtain an 

expression for the average wait, v   ,   in terms of the second moment of the length of 

blocked intervals.   From Equation (3.11) one obtains 

t  •O-'JcOv-1    g  (»•"•) 

and an equivalent form of Equation (3. 3), 

It follows that    V       is always less Jian   v 
Mr V 
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Stationary Vehicle and Gap Flow Rates 

Once the distribution of Inter-gap headways is known it is in principle easy to 

obtain the discrete counting laws for gaps and blocks.   Since there is a one to one 

correspondence between gaps and unblocked periods it will suffice to find counting 

distributions for the number of gaps in an interval.   Both gaps and blocked periods 

have a minimum size of x, hence, the maximum number which can be counted in an 

interval  t   is the Integral part of tx"1   or    N  =1 tx'1 j. The probability that exactly N 

gaps are counted in t  may be large. 

The probability  p (t)  that  n S N* gaps are counted in  t  if one starts to count 

with the passing of a gap is the convolution of the probability that the spacing to the 

first gap is  r  and n-1   gaps appear in  t-r. 

P0(t)  =    C(t)  ((4.1a) 

p   (t)   =     j        c(r) pn_1 <t - r)dr 1 S n < N        (4.lb) 
""o 

with transform 

pn(8)   =    C(8) [ 1 - 8C(s) | nS 0        (4.2) 

The transform of the average count of gaps in an interval is. 

-, , a(s)   -  a(s; x) (A  ov 
n(8)   = /    np  (s)  =    —^-^—~      ***•*' 

feo     n s(l -a(8)) 

firs; t.=>- is ic; souniea and.   1 ^ n ^ fc. 
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and the stationary flow rate of gaps (i.e. , gap count per unit time) is 

Lim       1    V »v 
^c  '     t->a>     F   A    n pn^> 

n=o 

-       ^"o      3^(8)08     -   v;l  (4.4) 

The limiting expression for the variance of this gap flow rate is^    ' 

N 

"0= .'S»    T I      C -",,)' PB(.) 
n=o 

= ffc2    ^c3  <4-5> 

From Equations (2.20) and (2.22) we obtain the mean and variance of the gap 

—1 2   3 flow rate in terms of the mean   n = v     and variance,    TJ =    o   n     of the stationary 

vehicle flow rate 

Uc  =  liA(x)  (4.6a) 

n0  -   nA2(x)    +   uc(l   + A(x) )  -   2nc
2   vg        (4#6b) 

The first expression becomes obvious by its simplicity for it is just the stationary 

vehicle flow rate,   p., multiplied by the probability that any two vehicles are separated 

by a gap. 
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5.     Poisson Flows 

A case of special interest occurs when the vehicles arrive at random, i.e., 

vehicle counts are Poisson.    The distribution of inter-vehicle headways is exponential 

with mean   \i      and the transforms of Equations (2.9) and (2.10) are 

a (s)      =     u(8)     = 
(1  + 8 

•(5.1) 

a(8;x)   ■    u(8;x) H + 8\ 1   -  e (H  + 8)X 

) 
(5.2) 

Since the distribution of headway from any time origin to the first vehicle is exponential 

a random time origin can be regarded as the passing of a vehicle.   Hence, the dis- 

tribution of wait for the first unblocked period and the distribution of vehicle to gap 

headway are identical.   Equations (2.13) and (3.2) become 

b(s)    =    w(s) fc j s)e 
-Vix 

s + ^i e -(U  +8)x 
(5.3) 

with an inverse equal to the density distribution of wait, 

px b(t)    =    w(t)   =    e   ^  5(t) t  =   o 

(5.4) 

N N 

0    (-l)V+ie-^*   ^jK+I (-^e^^^   <tßt- 

t> 0 
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where  N ■   tx"1  .   This expression was originally obtained and plotted by Raff       and 

Tanner^13^ in terms of the cumulative distribution. 

B(t) 
1=0 

.  . (5.5) 

(j-l)x S t S jx 

The average wait for an unblocked period 

-1    ux -1 V       =v.=ji      e^-x-ti w b 
(5.6) 

equals the expreseion we obtained in Equation (1.10) for the average vehicle to gap 

headway.   The expression for the variance of wait 

2 2 
w b 

e2tlX   -  2ux^X    -1 2 

.(13) 

(5.7) 

was originally obtained by Tanner 

For small gaps the average wait for an unblocked period increases quadratically 

with   x   and linearly with the flow rate of vehicles*. 

"jewell^   shows that Equation (5.8) is valid for arbitrary inter-vehicle distributions 
if we interpret U as the leading term in the power series expansion of 

d(t)  = 

CD i V x A n 
1=0 

in the footnote following Equation (3.1). 
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Vb    = Vw    =   ^   +   ^  (Ä3) (5.8) 

The transform of the probability that the Inter-gap headway is greater than t is 

C(8)  =  [s  +  ue"'^8*]"1  (5.9> 

with inverse 

C(t) =)   feiaLiili «"jwc  (5.io) 

Figure (2) is a plot of  C (t) as a function of t for several values of vehicle flow rates \i, 

The average inter-gap headway is 

v       =    iT1^  (5.11) 

For small gape this average headway approaches the average inter-vehicle headway 

plus the length of the minimum gap.     The variance of the inter-gap distribution is 

0 ^2 



1.00 

^.40 

I 

tx~ , headway in units of minimum gap 

FIGURE 2 — THE DISTRIBUTION, C(t), OF HEADWAY BETWEEN GAPS 
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which for small x is cubic in x, 

* i   +  |nx3  + O-Cx)  (5.13) 

The probability density distribution of headways from a randomly chosen time origin 

is   lie"*1*  times C(t)   in Equation (5.10) with average headway 

v     =    u"1 e»« - x  <5-14) 
v 

The density distribution of gap sizes is a shifted exponential, 

g(t)    =    He*»*"1* ta x  (5.15) 

with average gap size equal to the minimum gap plus the average inter-vehicle spacing, 

V      =    x   +   u"1  (5.16a) 
g — 

and variance 

4 = v'2  (5-i6b) 
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As we saw in  Equation (3.4) the distribution of block sizes is equal to the 

shifted distribution of vehicle to gap headways.   Since, for Poisson traffic, b(t) ■ w(t) 

we also obtain 

F(t)    » W(t-x) tax  (5.17) 

{ x>     e     '     (i -1):    + i:       / 

jx S t S  (j+Dx 

a result which was used by Rafr    '   to derive the distribution of block sizes from the 

distribution of wait for an unblocked period.   Clearly, this result and the statement that 

the density lunction  w(t) is a Linear function of  W(t - x) does not extend to non-Poisson 

traffic streams.    (See Equation (3.11)).    The distribution of lengths of unblocked periods 

is also exponential with mean  u ~ . 

Finally, we obtain tho transform of the average count In  t  from Equation (4.3) 

n(s)   -    Jg    e-^
+8)x  (5.i8) 

with Inverse 

■n(t)   = ji (t. - x) e"*1 X tax      (5.19) 
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The average and variance of the stationary gap now rate are 

po    =   ne-^  (5-20a) 

n      =   ne^x    -    2 p2x  e"^*  (5.20b) 
c 

The gap flow rate n„   is plotted in Figure (4) as a function of the vehicle flow rate. 

When the vehicle flow rate is small the gaps are large, but they appear infrequently. 

As the vehicle flow rate increases the flow rate of gaps increases, reaches a maximum 

when  \k =   x~      and falls off rapidly as the probability of large headways between 

adjacent vehicles becomes small. 

Few references have been made to experimental work in this area.   For the sake of 
(9) 

a large number of readers who may not have access to the paper by Moskowitz     , I   am 

reprinting one of his many experimental curves*.   In Figure (3) Moskowitz has plotted 

the probability that the wait for an unblocked period is greater than or equal to t for 

several vehicle flow rates.   The experimental and theoretical curves show very close 

fits fur low and medium flow rates in the major stream.   For an accurate description of 

the counting experiment and more detailed results the reader is referred to the original 

paper. 

* 
With the kind permission of the author. 



,001 
20^r     '40 140 160 180 

t, seconds 

FIGURE 3 - THE PROBABILITY OF WAIT FOR AN UNBLOCKED PERIOD 

(Moskowitz Data: Reference (9) 
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6.    Geometrie Bunching With A Minimum Headway 

(14) Weiss and Maradudin     ' have pointed out that a generalization of the translated 

exponential distribution 

A(t)  =  1 OS t S    A (6.1) 

e"^-^ Act 

is the probability diafribution which allows geometric bunching (for example,  runs of 

"fast" cars behind "slow" cars) with a minimum headway   A behind each vehicle, 

A(t)   =1 Os  t s    A      (6.2) 

-    (1 -O) e-P^ 

The average value and variance of the vehicle to gap, inter-gap, gap and block size 

distributions are summarized in Table (1).   Equations are expressed in terms of   ^ , 

the vehicle flow rate,  a the fraction of vehicles in bunches, and    A, the minimum 

headway.   The stationary gap flow rate, ti    = n (1-Cü) e 1 - n A    ,     is plotted 

in Figure (4) in addition to the gap flow rate In Poisson traffic streams.   The minimum 

gap size corresponds to a 5 second headway.   With the probability distribution of 

Equation (6.2) which includes a minimum inter-vehicle separation, A , the gap flow rate 

decreases more rapidly with large vehicle flow rates than for the Poisson case.   In fact, 

the average vehicle flow rate cannot exceed     A~ . 
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The effect of bunching is invariably that of giving smaller gap flows at low vehicle 

flows and higher gap flows at high vehicle flows than in the "no-bunching" case.   Bunch- 

ing represents a concentration of vehicles at the minimum headway; for the same average 

inter-vehicle headway (i.e., the same vehicle flow rate) the probability of big headways is 

also larger than in the no-bunching case.   At high vehicle flow rates the gap flow rate 

is sensitive to the tail of the inter-vehicle headway distribution; hence, the slower 

decrease in the gap flow rate. 

- 
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7.    Summary 

As I mentioned in the introduction, I feel that there are at least two important ways 

of looking at the statistical flow processes which generate large openings or gaps in a 

traffic stream.   One approach focuses attention on a "major" stream of traffic in order 

to then study a variety of flow and storage situations which are created in a crossing or 

merging traffic stream.   One of the more obvious merging problems is the one of a 

random arrival (in the minor stream) which waits for some combination of events 

associated with gaps in the major stream. 

A second approach, and the one which has received the greatest attention to date, 

formulates the statistical process in the major stream in terms of certain observed 

conditions In the minor stream — say the wait of a random arrival at an intersection. 

To the best of my knowledge, no one has as yet solved the problem which arises 

when the presence of a vehicle or some condition of vehicle delays in a minor stream 

directly affects the gap and block production process.   The so-called impatience of a 

merging car driver, for example, may turn out to be the manifestation of a bluffing 

maneuver which makes a small headway into a large gap between vehicles in the major 

stream.    There are many other theoretical questions which we have neglected in this 

(14 > paper   but Weiss and Maradudhr    ' have already made a careful survey of these 

problems. 

The work of earlier authors has prompted me to make an attempt, in the remainder 

of this section, to relate the results and notation of this paper to those of earlier ones. 

(7) (14) Since the two articles by Mayne   ' and Weiss and Maradudhr    ' contain complete 

bibliographies and since the authors make frequent reference to earlier results, I 

prefer to restrict my attention to their work.   Table (2) identifies some of the equivalent 

notation in these papers. 
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(7) 
MayneV ' arguments are basically the following:   If the conditional probability Is 

w(t/T)dt that the wait of an arrival in the minor stream lies between    t  and t + dt 

given the headway from the randomly chosen arrival time to the passing of the first 

vehicle is  T,   then 

oo 

w(t)    =   /  w w(t/T)  u(T)dT=    U(x) 6(t) t = 0 (7.1) 

= /       w t/T)  u(T)dT        t>  0 

is the marginal density disti-ibution of wait for an unblocked period. The equivalence 

of the Laplace transforms of Equations (7.1) and (3.1) is easily shown by substituting 

A(x) for k,    vform,   U(x) for   F(o),   x  for I and !  1 - a(8;x) |        for j(8) in 

Equation (3) of  Mayne (7) The transform 

w(s)   =  U(x)  + A(x)      |    1 - a(s;x)   -   A(x) o 
V s      (.        1 - ä'^x) 

-sx 
(7.2) 

reduces to Equation (3.1) with the help of the identity of Equation (3.12). 

(14) Weiss and Maradudhv       study the arrival time of a vehicle in the major stream 

(not necessarily the first one) given that a vehicle in the minor stream waits for this 

or a later arrival*.    A vehicle in the minor stream arrives at time zero.    Lot «(t) 

* MAX 
Again, it is important to point out that Weiss and Maradudhr    ' concern themselves 
with the distribution of wait under more general gap acceptance criteria than the 
acceptance of an unblocked period. 
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be the density function of the conditional probability that a vehicle in the major stream 

arrives between  t and  t + dt  given that the minor stream vehicle has not crossed. 

Either (i) this vehicle in the major stream is the first vehicle, or (ii) a vehicle arrives 

at time   r<t and tlie headway between the next two vehicles is <t-r).   The renewal 

equation which expresses this statement 

t 

a(t)  =    u(t)   + T «(r) a(t-r)dr Oit<x  (7.3a) 
Jo 

f      w(r)  a(t-r)dr x S t     (7.3b) 

can also be written as 

U(t)   =  u(t;x)   *   I    u(r) a(l-r;x)dr 0 •; t  (7.4) 

Since the wait of the minor stream vehicle is either zero or terminates with the 

beginning of a gap 

w(t)    -    U(x)  s(t) t   =   0          (7.5a) 

=    w(t)   A(x) t   >0 (7.5b) 

one can obtain a solution for w(t) by substituting the solution of Equations (7.4) or 

(7.3) into (7.5). 
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